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Abstract 

The shortage of water resources influences the future sustainability of sticky Maize (Zea mays L.) 

production. Deficit irrigation (DI) – a water management strategy – has gained much attention from 

scientists because of enhanced water use efficiency (WUE). Nonetheless, in reality, when applying this 

technique, its impact on yield and economic returns should be considered. Through an analytical literature 

review, this study examined the effect of growth stage DI on Maize production factors, i.e. yield, WUE, 

and economic returns. The results revealed that Maize’s WUE could be improved with the lowest 

reduction in yield as water stress was imposed during the vegetative or maturation growth stages. 

Therefore, the profitable returns could be reached even if the yield was reduced; however, the economic 

return was sensitive to commodity prices. The present review addressed that the Maize flexible capacities 

under growth stage water stress presented an opportunity for the optimization of irrigated water and profit 

preservation by accurately judging the managing time of irrigation implementation. 
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1 INTRODUCTION 

The production of maize (Zea mays L.) plays a major role in the economic and socio-economic 

development of many countries.  Being regarded as the world’s third most important crop [1], its contribution to 

development and food security can be attributed to its diversified uses: as a grain commodity, feed commodity, 

and a significant bioethanol source. However, corn production is among the largest plant users of water with its 

production being heavily dependent on irrigated water [2]. This dependency is increasing, and would continue to 

increase, owing to declining water resources mainly ascribed to climate change. Consequently, to ensure the 

sustainability of water resources and to optimize water use in irrigated corn production to maintain its future 

production, new strategies must be developed and implemented. Deficit irrigation (DI) is one of the proposed 

strategies for optimizing the water used in irrigated corn production. DI means the intentional under-irrigation of 

crops below full crop water requirements (crop evapotranspiration), while maintaining a positive economic 

return [3, 4]. Normally, deliberately subjecting corn to water stress has an impact on the productivity factors 

such as yield, water use efficiency (WUE), irrigation WUE, and economic returns [5, 6]; the impact is very 

sensitive to localized environments and management practices. It is a strategy aimed at procuring a maximum 

yield with less irrigation water; or an optimum net economical return is achieved with limited resources. The 

influence of DI on these factors is a function of, individually or collectively, the phenological stage of 

implementation – growth stage DI, available soil water, the irrigation system and the genotype used [7, 8]. The 

adoption of DI as a water management strategy has received considerable commendations from the scientific 

community because of improved WUE [9, 10]. However, when assessing the practicality of employing this 

technique, its realistic impact on yield and economic returns should be considered. This report assessed the 

feasibility of employing DI as a water management strategy for corn production. The analyses were based on 

secondary data obtained from international journals, and the evaluation focused on the impact of growth stage DI 

on the aforementioned productivity factors. 

 

2 MATERIALS AND METHODS 

2.1 Impact of water stress on corn production 

Irrigation is usually used as a supplemental source of water to rainfall to optimize crop production by 

supplying full crop water requirements (ETc). The amount of daily and or seasonal corn water use varies with 

climatic conditions, crop characteristics, and the specific developmental stage. The total amount of water used by 

corn will, therefore, vary depending on seasons and locations, and generally follow the pattern dictated by 

seasonal trends in weather variables and corn development. A general depiction of corn daily and seasonal water 
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use is shown in Figure 1. The smooth curve (A) represents the average seasonal water use, while the jagged 

curve (B) illustrates the daily fluctuation for the season. Figure 1 also highlights the specific growth stages for 

corn. In this paper, the maize growing season was divided into three phases: vegetative – from emergence to 

tassel emergence; flowering – from tassel emergence to milk stage of grain, from milk stage to physiological 

maturity (maturation). When water supplies cannot fully compensate for ETc, deficit irrigation (DI), yields may 

be reduced compared to fully irrigated corn. The degree of the impact can be examined as a function of the 

growth stage of implementation [11]. According to Andrioli and Sentelhas [7] and Doerge [12] maize is 

extremely susceptible to water stress during the flowering stage and less sensitive during the vegetative periods. 

In fact, Doerge [12] noted, “the vegetative stage of corn is the least sensitive to water stress and judiciously 

delaying the first irrigation may offer an opportunity to conserve water and maintain profitability”. Figure 2 

illustrates the yield susceptibility of corn through the growing season. From the figure, it can be observed that 

early water stress has a less impact on grain yield as compared to the flowering, tassel to silk, stage. 

Productivity factors to evaluate corn responses to deficit irrigation. Corn is one of the globe's most widely 

used food staples and given its potential industrial application serves as a climate change mitigation option, 

while sustainable production is crucial in light of dwindling water resources. 

 

Fig. 1 The average ET for corn in a growing season (A) and the daily ET (B) [13] 

 

 

Fig. 2 Sensitivity of grain number to water stress at different growth stages [14] 

Consequently, many studies had been directed towards understanding the dynamics of soil water 

relationships and the impact on corn production. This report analytically reviewed several works to investigate 

the feasibility of employing DI in corn production. The review utilized secondary data reported in international 

literature, conference proceedings, and technical reports and only considered the data collected from field 

experiments with similar methodologies – growth stage directed DI. Additionally, relevant criteria for selecting 

articles were concentrated on the impact of DI on the productivity factors such as maize yield, water use 

efficiency, and economic return, where applicable. Traditionally, for plants, water productivity was usually 

expressed as water use efficiency (WUE) (kg ha
-1

 mm
-1

), defined as the ratio of biomass produced to the rate of 

transpiration:  
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 (1) 

where:  

Ya  – grain yield achieved
1kg ha   , 

ETc  – total water used for the cropping season
1mm   , 

However, using ETc has its limitation in that not all the irrigation water is used in the evapotranspiration 

processes and a fraction of the ETc comes from sources other than irrigation [15]. Thus, the irrigation water use 

efficiency (IWUE) is another indicator used to investigate the water productivity as it was economically more 

important [5, 15]. 

 aYIWUE
TI

  (2) 

where:  

TI  – total irrigated water used 
1mm   . 

The economics of production used in this report is adopted from [3, 16]. The economic water productivity 

ratio (EWPR), shown in Equation 3, relates to the yield value with the full farming cost of total water used 

(TWU): 

 
 

 
aValue Y

EWPR
Cost TWU

  (3) 

 

3 RESULTS AND DISCUSSION 

Exposed to limited water supplies, agronomic management strategized that meticulously control, when 

irrigating, by limiting water during the growth stages that were least sensitive to water stress while saving water 

for the critical stages, could be a valuable strategy to maximize yield return from limited water (Figure 3). 

According to Doerge [12], growers can conserve water by delaying the first irrigation later into the season, as 

late as tasseling (see Figure 2) in years of lower evaporative demand, without any significant reduction in yield. 

Similar results were reported by Huang et al. [17]. Table 1 highlighted some key works illustrating that selective 

growth stage DI could be employed as a water management strategy with a limited impact on yield procured. For 

instance, the WUE factor of 30.9 and 21.4 kg ha-1∙mm-1 for DI imposed at vegetative stage only, compared to 

29.1 and 19.2 kg ha-1mm-1, respectively, under full irrigation treatment, indicated with a minor yield depression 

of 2.99 % and 5.79 % that it was possible to improve water used in corn production. 

 

Fig. 3 Generalized relationship between yield, irrigation water, and ET. IW - the point at which the 

productivity of irrigation water starts to decrease and IM - the point beyond which yield does not increase 

any further with additional water application [4] 
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Indeed, when water supplies were inadequate, the farmer’s goal should be to maximize net income per 

unit of water used rather than per land unit. Notably from Table 1, any potential water saving by supplying DI at 

the flowering stage does not compensate for the severe yield loss as indicated by the low WUE of 14.4. 

Generally, as observed in Table 1, the WUE increases under DI, relative to its value under full irrigation. Small 

irrigation amounts increase the crop ETc linearly up to a point where the relationship becomes curvilinear 

because some of the applied water is not used in ETc [4], as illustrated in Figure 3. The ‘law of diminishing 

returns’ becomes applicable, as additional amounts of irrigated water does not result in an increase in yield at 

some point (indicated by the IM point; Figure 3). Besides, the IWUE was higher with DI than under full 

irrigation, as shown in Table 1. These results indicated that under water deficit conditions, except during the 

flowering stage, deficit irrigated maize was able to produce more grain yield per unit of irrigation water applied 

than maize subject to full irrigation. This had important economic implications because it meant that economic 

returns could be high for users who paid high cost for irrigated water. Other works also report similar findings. 

Based on a 9-year field studies conducted in Kansas, Doerge [12] reported that delaying the first irrigation 

significantly depressed yield in only 3 of the years, and yields were not significantly impacted in any year unless 

the first irrigation was delayed by at least 4 weeks. In the 3 years, when the delayed irrigation curtailed yields, 

the average yield losses for delaying for four and five weeks before making the first water applications were 11 

and 42 %, respectively. Nebraska, Hergert et al. [18] reported corn yields of 10.1 and 11.8 Mg ha
-1

 for limited 

irrigation and full irrigation respectively, with noteworthy DI water returns of 31 kg ha
-
1∙mm

-1
 with 11 kg ha-

1mm-1 for full irrigation. 

 

Tab. 1 Growth stage DI impact on water productivity variables 

Yield, Ya, (kg ha
-1

) % Reduction in Ya WUE (kg ha
-1

mm
-1

) IWUE (kg ha
-1

mm
-1

) Source 

16554  29.1 42.5  

 

 

[3] 

16074 2.99 30.9 44.7 

14784 10.7 26.0 44.0 

14279 13.7 29.0 47.6 

11650  19.2 21.7  

 

 

[15] 

10975 5.79 21.4 22.3 

7005 39.9 14.4 16.9 

10740 7.81 21.3 27.7 

10954  18.4 26.9  

[5] 8981 18 25.4 41.7 

11073  20.3 11.3  

 

[17] 

9951 10.1 25.5 16.2 

8527 23 26 16.2 

*Referred to average yield over the study period; V – vegetative; F – flowering; M – maturation. Note: Some of 

the presented values were not directly listed in the cited works, but were calculated by equations 1 and 2. 

The literature was sparse in presenting a monetary value of the economic impact of practicing DI, owing 

to the dynamic and sensitive nature of production costs. However, it could be assumed that with a yield 

reduction the profit return would be negatively affected. The degree of this depended on the factors such as 

commodity price, farming size – as economies of scale could be applicable, and technology use, including an 

irrigation system. Rodrigues et al. [3] showed that under a low commodity price scenario (154 € ton-1), EWPR 

for full and DI irrigation treatments (Table 1) ranged between 0.64 and 0.97, indicating that the economic return, 

becoming unprofitable even when using a high efficient irrigation system, decreased as shown in Figure 4. In 

contrast, when considering high commodity prices (264 € ton-1), EWPR greater than that shown in Figure 4, 

farming maize under DI, could still lead to profit, even if the yield was reduced.  
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Fig. 4 Economic water productivity ratio (EWPR) for all deficit irrigation treatments and irrigation 

systems applied to 5-hectare farm sizes when adopting low and high commodity prices.  A - full irrigation; 

B - stress imposed at V; C - stress imposed at M and; D - stress imposed at V & M. [3] 

 

4 CONCLUSIONS 

This review was conducted to assess the effect of DI on water use and corn yield and to determine the 

feasibility of employing growth stage DI as an effective water management strategy. The review indicated that it 

was possible to achieve relatively high yields in maize if DI was applied in stages other than flowering. With 

improved WUE and IWUE recorded for DI, minor yield reductions imply that there was a potential for water 

conservation. However, its practicality was limited, as commodity price would dictate. There was a trade-off 

between water conservation and profit return. In some cases, DI could be practiced with expectations of 

achievable profit, despite a yield reduction. Most research works, however, were advocated in this area as many 

of them focused on environmental benefits. Exposed to limited water supplies, agronomic management 

strategized that meticulously control, when irrigating, by ensuring limited water provided at critical growth 

stages could be a valuable strategy to maximize yield return from limited water. 
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